Eddy Mixing of Potential Vorticity versus Thickness in an Isopycnic Ocean Model
نویسندگان
چکیده
Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where b/h dominates the PV gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more singlesigned than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.
منابع مشابه
A new gauge-invariant method for diagnosing eddy diffusivities
Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from u...
متن کاملSensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes
A simplified version of the near-boundary eddy flux parameterization developed recently by Ferrari et al. has been implemented in the NCAR Community Climate System Model (CCSM3) ocean component for the surface boundary only. This scheme includes the effects of diabatic mesoscale fluxes within the surface layer. The experiments with the new parameterization show significant improvements compared...
متن کاملA model of the upper branch of the meridional overturning of the southern ocean
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on...
متن کاملEvidence for deep eddy mixing in the Southern Ocean
Satellite altimetric observations of the ocean reveal surface pressure patterns in the core of the Antarctic Circumpolar Current (ACC) that propagate downstream (eastward) but slower than the mean surface current by about 25%. We argue that these observations are suggestive of baroclinically unstable waves that have a steering level at a depth of about 1 km. Detailed linear stability calculatio...
متن کاملDispersive–Dissipative Eddy Parameterization in a Barotropic Model
Recently a new class of coarse-grained equations, known as a models, have been proposed for the mean motion of an ideal incompressible fluid. The use of one such model to represent the time-mean component of a turbulent b-plane circulation characterized by potential vorticity mixing is considered. In particular, the focus is on the wind-driven circulation in a shallow ocean basin, a problem wel...
متن کامل